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Abstract

In this first part of two papers on diffusion synthetic acceleration (DSA) methods, we consider three–

dimensional, unstructured tetrahedral meshes using a lumped, linear discontinuous discretization of the

first order form of the SN transport equation. We will identify certain types of multidimensional problems

for which established DSA schemes are ineffective and so result in inefficient transport solutions. We

consider a fully consistent DSA method in addition to the partially consistent method currently being used

in the production transport code AttilaV2. The types of highly diffusive problems for which both DSA

methods become ineffective can be generally classified into problems containing highly diffusive regions

with large scattering ratios together with large discontinuities in material properties. Effectiveness of the

fully consistent method degrades only in the presence of material discontinuities while it is independent

of optical thickness. The partially consistent method degrades somewhat scattering ratios are large and

cells are optically thick and the presence of material discontinuities makes it worse. We use the results

of Fourier analysis and numerical experiments to systematically examine these observations, focusing on

the kinds of very diffusive problems for which DSA is most needed.



1 INTRODUCTION

There are many problems of interest for which diffusion synthetic acceleration (DSA) is essential for com-

puting SN transport solutions in a reasonable amount of time. It is well–known that the discretization of

the DSA diffusion equations must be “consistent” with the SN transport discretization to be effective and

robust.1–3 The effectiveness of DSA can be measured by the spectral radius of the accelerated algorithm. It

is always less than one for a useful algorithm and the closer it is to zero, the faster the iteration converges.

In the spatially discretized case, consistency is necessary for DSA to achieve the level of acceleration that is

predicted analytically.2,4, 5

In a recent paper, an efficient solution method for the fully consistent, linear discontinuous, finite element

(DFEM) diffusion (P1) equations was developed.5 Solution of the P1 linear system was used as a fully

consistent DSA (FCDSA) scheme for accelerating the iterative solution of the DFEM discretization of the

SN transport equation on three–dimensional unstructured tetrahedral meshes for isotropically scattering

problems. The FCDSA method was compared to two partially consistent methods, the simplified WLA

(S–WLA) scheme6 that is currently employed in the AttilaV2 production code7 and the Modified Four–Step

(M4S) method.8 An effective DSA scheme is one that results in a large error reduction per iteration. This

corresponds to a spectral radius significantly less than one. The effectiveness of a DSA method, however, is

not a sure measure of its potential performance. The efficiency of the method also has to be considered. An

efficient DSA scheme is one in which the spectral radius small enough and the cost of computing the DSA

correction is small enough such that the transport solution is computed to a given tolerance with less overall

computational effort than would otherwise be possible. In Ref.5 it was found that the FCDSA method

is effective over a wide range of problems but the expense of computing the solution to the consistently

discretized P1 equations is very high and the method is not always efficient. That is, the cost of computing a

consistent diffusion correction sometimes overwhelms the reduction in the number of source iterations thus

obtained. A partially consistent consistent scheme, such as the Simplified WLA method, was found to be

more efficient in some cases, despite being significantly less effective than the fully consistent method.

However, in certain kinds of highly diffusive problems – problems for which DSA is most needed –

DSA schemes could lose their effectiveness. A degradation in effectiveness may only occur under certain

circumstances, for example, in higher dimensions or on non–rectangular or unstructured meshes. A particular

example is the M4S DSA scheme. It was originally shown to be effective for homogeneous problems over a

wide range of cell thicknesses both in one dimension and on two–dimensional rectangular grids.8 In Ref. 5,

however, the M4S method was found to be unstable on three–dimensional tetrahedral meshes for cells of

intermediate optical thickness. Similarly, the S–WLA method was shown to be unconditionally effective

in one dimensional slab geometry6 but in Ref. 5 it was shown that its effectivness is reduced in problems

with optically thick cells and scattering ratios very close to 1.0. Meshes with poorly shaped or skewed cells
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(those having both very large and very small interior angles) can make the degradation worse in highly

diffusive problems. It was shown in Ref. 5 that the S–WLA effectiveness is further reduced by poorly shaped

mesh cells in highly scattering problems and the Modified Four–Step method became unstable for cells with

decreasing aspect ratios, but which were still relatively well–formed. FCDSA consistent method was shown

to be only slightly affected by cell shape and to a much lesser extent than S–WLA.

Another case in which DSA methods, even fully consistent schemes, can lose their effectiveness is in

heterogeneous problems with strong material discontinuities. This is the situation we are concerned with

in this paper. Such problems contain two or more materials with total cross sections that vary by as much

as several orders of magnitude. The problem may consist of relatively large regions of different materials

sharing a common interface or it may be one in which the materials differ from cell–to–cell. Without

loss of generality we will limit ourselves to problems with just two different materials. Degradation of

the partially consistent S–WLA method occurs on unstructured meshes for problems with optically thick

cells and scattering ratios approaching unity regardless of material discontinuities. Introducing material

discontinuites only exacerbates the reduction in effectiveness. Degradation of the FCDSA method also occurs

in the presence of material discontinuities but if all regions are optically thick, then it remains effective even

with large material discontinuities.

The adverse effects of material heterogeneities on DSA methods was noted in Ref. 9 for consistently

accelerated even–parity SN equations in two–dimensional Cartesian geometry. There the degradation of the

DSA spectral radius was analyzed and observed numerically using layers of two different materials in a so–

called Periodic Horizontal Interface configuration. The authors also point out this effect is not exhibited by

consistent methods in one dimension.

Our purpose in this paper – the first of two parts – is to identify certain types of heterogeneous problems

that cause a marked decrease in the effectiveness of both the partially consistent S–WLA method and the

FCDSA method. We use the same Fourier analysis on three–dimensional tetrahedral meshes as presented

in Ref. 5 but modified to account for multiple materials. These analytical predictions are compared to

numerical computations for problems in which we see a reduction in DSA effectiveness. We will not consider

the M4S scheme because it was found to be unstable. We emphasize that this degradation only appears

when the scattering ratios are very close to unity. This may be possible in time–dependent problems of

radiative transfer, for example, where the effective scattering ratios are very close to one with time steps of

typical size.

The rest of the paper is organized as follows. We will present the linear discontinuous discretization and

briefly discuss the DSA methods considered in the next section. The following section will present a Fourier

analysis of the DSA schemes and establish the classes of problems for which difficulties are expected. In the

section after that we will present the results of actual numerical computations with the AttilaV2 host code
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that verify the Fourier analysis. The paper concludes with some summary closing remarks.

2 DISCONTINUOUS FINITE ELEMENT DISCRETIZATION ON TETRAHEDRAL

MESHES

We will begin by presenting the linear discontinuous finite element method (DFEM) for the transport equa-

tion on tetrahedra followed by a brief overview of the fully consistent and partially consistent DSA methods

that we consider in this paper. Further details on the fully consistent scheme can be found in Ref. 5 and

details of the partially consistent method can be found in Ref. 10.

2.1 Discontinuous Finite Element Discretization

The notation used here has the usual meaning11 and we assume cgs units. Given an angular quadrature

set with N specified nodes and weights {Ω̂m, wm}, a distributed source of particles Q(r, Ω̂) and anisotropic

scattering of order L, the monoenergetic, steady–state SNtransport equation in the three–dimensional domain

r ∈ V with boundary rs ∈ ∂V , is

Ω̂m ·∇ψm(r) + σt(r)ψm(r) =

L
∑

l=0

σs,l

l
∑

n=−l

Yln(Ω̂m)φn
l (r) +Q(r, Ω̂m), m = 1, . . . , N. (1a)

Here, Yln(Ω̂) are the spherical harmonics functions and the scalar flux moments are

φn
l (r) =

N
∑

m=1

wmYln(Ω̂m)ψm(r). (1b)

We assume that the quadrature, cross sections, and spherical harmonics are appropriately normalized.

Boundary conditions are specified on the surface rs with outward unit normal n̂ by

ψm(rs) = Γ(Ω̂m) for (n̂·Ω̂m) < 0. (1c)

For the remainder of both parts of this paper we will assume only isotropic scattering, for which we set

L = 0 and σs,0 = σs. The inhomogeneous source is also assumed to be isotropic, or Q(r, Ω̂) = Q0(r). We

will consider vacuum boundary conditions, Γ(Ω̂m) = 0, isotropic incident boundary sources, Γ(Ω̂m) = Ψ0,

or specular reflection boundary conditions, in which case Γ(Ω̂m) = ψm′(rs). In the latter case, the reflected

image of Ω̂m, denoted by Ω̂m′ , is defined by

Ω̂m′ = Ω̂m − 2 n̂
(

Ω̂m · n̂
)

. (1d)

Therefore, we set Γ(Ω̂m) = ψm′(rs) on reflective boundaries, where Eq. 1d determines m′.
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The linear DFEM discretization is specified by the following variational formulation. It is written in source

iteration form with iteration index `. Given an angular flux expansion in terms of the four independent linear

basis functions on a tetrahedral cell Tk,

ψm,k =
4

∑

j=1

ψm,j,kLj(r), (2)

find the linear approximation for each angle Ω̂m that satisfies

Ω̂m·
(

∫

∂Tk

n̂ ψb
m uk dS−

∫

Tk

ψ`+1
m,k∇uk dV

)

+σtk

∫

Tk

ψ`+1
m,k uk dV = σsk

∑

m

wm

∫

Tk

ψ`
m,k uk dV +

∫

Tk

Qmuk dV

(3a)

for all trial functions uj on cell Tk. The Galerkin approximation takes the trial functions to be the basis

functions themselves and the above expressions can be evaluated for each of the four trial functions. This

gives four equations for the four unknowns ψm,j,k on the cell. Before carrying out the integrations in Eq. 3a,

however, we first introduce the discontinuous approximation. Considering a cell k with face j whose outward

normal is n̂j , the boundary terms ψb
m,j are defined as

(

Ω̂m · n̂j

)

ψb
g,m =































(

Ω̂m · n̂j

)

ψg,m,i(j),s, Ω̂m · n̂j > 0, n̂j in V

(

Ω̂m · n̂j

)

ψg,m,i(j),l, Ω̂m · n̂j < 0, n̂j in V \∂V
(

Ω̂m · n̂j

)

Γ(Ω̂m), Ω̂m · n̂j < 0, n̂j on ∂V

(3b)

where l is the cell that shares face j with cell s. The subscript i(j) denotes three vertices i on a face j of

a given cell. Simply put, if nj is on the boundary of the problem domain V , then the boundary condition

is used to define the incoming angular flux; otherwise the internal or external values angular fluxes are

used depending on the orientation of the cell face with respect to the quadrature direction. The discrete

boundary conditions are vacuum, Γ(Ω̂m) = 0, or Γ(Ω̂m) = ψg,m′,i(j),s for reflective boundary conditions,

where m′ satisfies Eq. 1d for Ω̂m and n̂ = n̂j . Reflection is implemented only for boundary faces aligned

parallel to the x, y or z coordinate axes such that the standard quadrature sets we use contain the reflected

angles that satisfy Eq. 1d.

Having evaluated Eq. 3 (either analytically or by quadrature approximation) for every cell in the mesh,

the angular flux, ψm,i,j , can be computed for all vertices j = 1, 4 of every cell k, one cell at a time over the

entire mesh. This is done in a predetermined order for every quadrature angle Ω̂m. The process, called an

angular sweep, is repeated at every source iteration.

Note that Eq. 3a can be written in operator notation as

Lmψ
`+1
m = Sφ` +Q, φ` = Kψ`

m, Bψm = gm, (4)
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given some initial guess φ0 to the the scalar flux. Boundary conditions are represented by the angular

function gm.

Details of the discretization can be seen in Appendix A, which includes a description of the asymptotic–

preserving lumping on tetrahedra used in AttilaV2. This lumped, linear discontinuous scheme not only

preserves the diffusion limit but is found to be robust over a wide range of problems.

2.2 DSA Methods

It is easy to see that the convergence of source iteration, which is also known as Richardson or simple

iteration, is governed by the spectral radius of the operator (L−1
m S). The spectral radius is bounded above

by the maximum scattering ratio c = σsk/σtk on the mesh (we assume c ≤ 1).2 This implies that for

highly scattering, diffusive problems with c ≈ 1 this iteration is expected to converge slowly, making a

solution costly or even impractical. Diffusion synthetic acceleration modifies the source iteration algorithm

by computing a correction to the scalar flux, where the diffusion equation is used as an approximation to

the transport operator.2,12–14 For homogeneous problems it can be shown that DSA reduces the spectral

radius to approximately 0.225c, without angular discretization.2,5

Although the details are very well–known, we will briefly review the DSA method now to put it in

context. We will ignore boundary conditions for purposes of discussion. What is stated here holds for source

or boundary conditions with only slight changes needed for reflective boundary conditions. Operating on

Eq. 4 with K the iteration for the scalar flux can be written as

φ`+1 = TSφ` + b (5)

where T = KL−1
m and b = TQ0. This is a Richardson iteration for the operator A = (I − TS). If φ is the

exact solution to Eq. 5 then the error f `+1 = (φ− φ`+1) satisfies

(I − TS)f `+1 = TSr`, (6)

where r` = (φ`+1 − φ`) is the residual. Equation 6 suggests that we can use an approximation to the

operator (I − TS)−1TS to estimate the error and correct the current iterate. This will lead to a more

efficient iteration if the approximate operator is relatively easy to setup and invert and if the approximate

operator adequately reduces the spectral radius.

In the case of DSA, the approximate operator involves the diffusion operator, D. This is an appropriate

choice because the diffusion equation is the asymptotic limit of the transport operator in highly diffusive

regimes.15,16 This is just the situation for which we need acceleration. The diffusion operator is effective

because it accounts for those errors which are poorly attenuated by source iteration. Whether the diffusion
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operator can be inverted easily and result in a more efficient algorithm depends on the spatial discretization

of both the transport equation and the diffusion equation. Introducing an intermediate correction step in

the source iteration algorithm, the DSA algorithm is

φ`+1/2 = Tφ` + b (7a)

f `+1/2 = D
−1

S

(

φ`+1/2 − φ`
)

(7b)

φ`+1 = φ`+1/2 + f `+1/2. (7c)

The operator D−1 represents the “action” of the diffusion operator on the quantity S
(

φ`+1/2 − φ`
)

. Analyt-

ically the operator D is the diffusion equation and D−1 is simply its inverse. In the discrete case, however,

D−1 not only represents the inverse of spatially discretized diffusion equation because certain there may

be certain projection and interpolation operations that are needed as well. It is the properties of all the

computations represented by the D−1 operator that determines how effective, efficient and robust the over-

all DSA algorithm will be in practice. Foremost among these properties is the spatial discretization of the

diffusion equation; it must be consistent in a certain sense with the discretization of the transport operator

for DSA to be effective.2,14 It is possible, however, that consistent discretizations could be difficult to derive

or impractical to implement and solve. Furthermore, we will see in this paper that consistency alone does

not guarantee an unconditionally efficient algorithm.

For our purposes here, we will consider two different definitions for the operator D−1. One is the

fully consistent method based on a discontinuous discretization of the P1 equations that has been described

in Ref. 5. Solution of the corresponding large, sparse, linear system gives the necessary discontinuous

scalar flux corrections directly. Unfortunately, we found this linear system (which can be written either

in symmetric, indefinite form or nonsymmetric, positive definite form) was very difficult to solve. Despite

the very effective preconditioner we developed for the iterative solution of these equations, the overall DSA

accelerated transport solution cost did not improve in all cases. The other DSA method we will look at

is a partially consistent scheme, the S–WLA method. The basic theme of the method is quite simple. A

finite element projection of the residual in the discontinuous scalar fluxes is computed. This is used as

the source term for a linear continuous finite element diffusion equation for the scalar fluxes centered on

the mesh vertices. The linear system is symmetric and positive definite so it can be solved efficiently with

conjugate gradient iterations. From the resulting solution on the vertices, a correction to the discontinuous

scalar fluxes is computed using the approach described in Ref. 10 for general meshes and arbitrary geometry

combined with the lumping described in Appendix A. For reflective conditions, the linear continuous diffusion

equation source includes a projection of the residual in the scalar fluxes composed from the angular fluxes

on the reflective boundary faces. These angular fluxes are then corrected based on the diffusion equation
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solution.

Both of these methods will be examined in the following sections through Fourier analysis and numerical

examples. A fully consistent scheme should be the best possible method while a partially consistent or

inconsistent method is expected to be somewhat less efficient. We will find, however, that neither method is

unconditionally effective in the kinds of problems we consider here.

3 FOURIER ANALYSIS

In this section we present a three–dimensional Fourier analysis on tetrahedra that we apply to the source

iteration convergence of both the FCDSA and S–WLA methods. The classes of problems for which the fully

and partially consistent methods lose their effectiveness are identified.

The Fourier analysis begins by dividing a three–dimensional box, or basic element, into six tetrahedra

of equal volume. The orientation of the tetrahedra cell edges with this subdivision allows us to “tile” a

volume with these basic elements. The box is of dimension (∆x × ∆y × ∆z) as shown in Fig. 1. We can

analyze the effects of material discontinuities for heterogeneous problems by assigning total cross sections

σt,1 and σt,2 to the two halves of the basic element as indicated, each half consisting of three tetrahedra. The

∆z

∆y

∆x

t,1σ

σt,2

Figure 1: The basic element divided into 6 tetrahedra of equal volume. The two regions, each of which

consists of three tetrahedra, contain materials with total cross sections σt,1 and σt,2.

Fourier analysis procedure is implemented via the symbolic algebra program MAPLE, the details of which

are described in Ref. 5. The procedures outlined there have been modified to account for two materials.

This basic element is assumed to repeat periodically in three dimensions through a Fourier ansatz of both

the discontinuous and the continuous, vertex–centered unknowns. The transport and DSA equations are

written by MAPLe in terms of the Fourier ansatz and the 24× 24 matrices are translated to Fortran. They

can then be evaluated as a function of the element dimensions ∆x, ∆y, and ∆z, the material properties c,

σt,1 and σt,2, and the Fourier wave vector [λx, λy, λz] ∈ [0, 2π]× [0, 2π]× [0, 2π]. The space of wave numbers
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is searched with a simplex optimization algorithm to find the maximum eigenvalue for a set of dimensions

and material properties, which gives a prediction of the spectral radius and, hence, the convergence rate of

the transport source iteration.

The spectral radius predicted by Fourier analysis was calculated over a range of cross sections, scattering

ratios, and cell shapes in an attempt to account for the range of problems we expect to encounter in

our applications. An S4 triangular Chebyshev–Legendre quadrature is used for which the analytical DSA

spectral radius is 0.2543c. The dimensions of the box are fixed ∆x = ∆z 1.0cm = ∆y = 1.0cm and

the total cross sections in the two regions are varied over six orders of magnitude. For the scattering ratios

c = 0.9999, 0.999, 0.99, and 0.9, the results for the S–WLA method are shown in Figs. 2 –5 and results for the

FCDSA method are shown in in Figs. 6 – 9. Each plot has eleven curves on it that show the variation in the

spectral radius as σt,2 is varied for fixed values of σt,1. Note that the curves for σt,1 < 1 have their minimum

near the analytical value. Clearly there is a strong dependence on the scattering ratio in the problem as c

approaches 1.0 which is more pronounced for the partially consistent DSA scheme in the optically thick limit.

When the one of the cross sections is very large, FCDSA is much more effective than the S–WLA method

and it does even better when both cross sections are large, independent of the scattering ratio. Aside from

the differences in this thick limit between the two DSA methods, the most important observation to note

is that neither method can be reliably depended upon to reduce the spectral in heterogeneous problems as

c −→ 1. It is now clear that consistency alone does not ensure that a DSA method will be unconditionally

effective in all problems.

We end this section by noting that it may be possible to restore, to some extent, the effectiveness of the

DSA methods in the strongly heterogeneous problems by setting the total cross section in the optically thin

regions to some fixed value. For the FCDSA method, this could be done in both the first moment and balance

equations, or just the first moment equation alone. Similarly, for the S–WLA method, this could be done in

the diffusion coefficient and the absorption cross section, or in the diffusion coefficient alone. However, it is

difficult to determine an appropriate value for this parameter. We have found that it depends very strongly

on the problem and that there is an optimal value which may in general be difficult to determine a priori.

This is not very satisfactory so we will not pursue at this time.

4 NUMERICAL RESULTS

In this section we present the results of numerical computations with the unstructured tetrahedral mesh

transport code AttilaV2. These computations are carried out for the kinds of difficult problems identified by

the Fourier analysis in the previous section. They are intended to verify the results of the Fourier analysis

and confirm the degraded effectiveness of the DSA schemes in a realistic problem. Throughout, total cross

sections have units of cm−1.
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Figure 2: Fourier analysis for the S–WLA method in heterogeneous problems with c = 0.9 and total cross
sections σt,1 and σt,2.
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Figure 3: Fourier analysis for the S–WLA method in heterogeneous problems with c = 0.99 and total cross
sections σt,1 and σt,2.
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Figure 4: Fourier analysis for the S–WLA method in heterogeneous problems with c = 0.999 and total cross
sections σt,1 and σt,2.
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Figure 5: Fourier analysis for the S–WLA method in heterogeneous problems with c = 0.9999 and total cross
sections σt,1 and σt,2.
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Figure 6: Fourier analysis for the FCDSA method in heterogeneous problems with c = 0.9 and total cross
sections σt,1 and σt,2.
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Figure 7: Fourier analysis for the FCDSA method in heterogeneous problems with c = 0.99 and total cross
sections σt,1 and σt,2.
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Figure 8: Fourier analysis for the FCDSA method in heterogeneous problems with c = 0.999 and total cross
sections σt,1 and σt,2.

2
-10

2
-8

2
-6

2
-4

2
-2

2
0

2
2

2
4

2
6

2
8

2
10

σ
t,2

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ec

tr
al

 R
ad

iu
s

σ
t,1

=2
-10

σ
t,1

=2
-8

σ
t,1

=2
-6

σ
t,1

=2
-4

σ
t,1

=2
-2

σ
t,1

=2
0

σ
t,1

=2
2

σ
t,1

=2
4

σ
t,1

=2
6

σ
t,1

=2
8

σ
t,1

=2
10

Figure 9: Fourier analysis for the FCDSA method in heterogeneous problems with c = 0.9999 and total cross
sections σt,1 and σt,2.
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Figure 10: Two material mesh used to compare the Fourier analysis spectral radius predictions with actual
computations with AttilaV2. This is (6× 6× 6) grid of cubes, 1.0 cm on a side, each divided into
two sets of three tetrahedra with a different material in each set, as indicated by the shading in
the figure.

The first set of results is for a mesh consisting of a (6 × 6 × 6) “grid” of cubes, each (1.0 cm on a side.

Every cube is divided into six tetrahedra, three of which have total cross section σt,1 and three of which

have total cross section σt,2. This is just like the basic element used for the Fourier analysis in the previous

section. An illustration of the mesh is shown in Fig. 10. The boundary conditions are vacuum on the six

faces of the problem and the scattering ratio is fixed at c = 0.999.

We compare the results of the previous section to the spectral radius measured with AttilaV2 for this

problem. Starting with a random initial guess, the spectral radius is estimated by taking the ratio of the

residual at two successive iterations, that is,

ρ ≈ ‖φ`+1 − φ`‖2

‖φ` − φ`−1‖2
,

and renormalizing the scalar flux to ‖φl+1‖2 after each iteration `. The value reported after 100 iterations

is shown in the figures, which we observed were more than enough to reach a value that was not changing

in the fourth digit. The stopping tolerance used in the inner DSA iterations was fixed at 10−6. Fig. 11

shows the spectral radius measurements for the S–WLA method for fixed σt,1 = 2−2, 24, 210 as σt,2 is varied

compared to the Fourier analysis of the previous section. Fig. 12 shows the same set of measurements made
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using the FCDSA method. The measured values agree very well with the Fourier analysis. However, when

the cross sections are small and the problem domain is optically thin, leakage from the problem reduces the

spectral radius relative to the Fourier analysis, which implicitly assumes an infinite, periodic medium. These

results confirm that the degradation in heterogeneous problems predicted by the Fourier analysis occurs in

actual computations.
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Figure 11: The spectral radius for the S–WLA method with c = 0.999 measured with the AttilaV2 code and
compared to selected Fourier analysis results from the previous section.

The next set of results are for solutions to a more realistic problem. The mesh consists of two regions, a

box with total cross section σt,1, centered inside of a hemisphere with total cross section σt,2. The half–sphere

has a 10 cm radius and the box is 10
√

2 cm on a side and 5 cm tall. The mesh is illustrated in Fig. 13.

The bottom of the entire hemisphere has a reflective boundary condition, the remainder being vacuum. An

isotropic unit source is distributed throughout the box. The scattering ratio is c = 0.9999.

Using AttilaV2 on a serial SGI Origin 2000 processor, we measured the number of iterations and number

of floating point operations (FLOP) for convergence to a relative residual of 10−6 for this problem. A

fixed stopping criteria of 10−7 was used for the inner DSA iterations. The measurements are shown in

Tables 1 and 2. The results are revealing. Firstly, note the two ranges of degradation in the upper right
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Figure 12: The spectral radius for FCDSA mwith c = 0.999 measured with the AttilaV2 code and compared
to selected Fourier analysis results from the previous section.

and lower left parts of both tables. These correspond to regions containing optically thin and thick regions

in the same problem, confirming that DSA does indeed degrade in this kind of situation, even in realistic

calculations. The iteration counts indicate the same kind of dependence on the two total cross sections

as seen in the Fourier analysis of the previous section. Secondly, note that even when both regions are

optically thick, S–WLA is not very effective while the FCDSA method is extremely effective in this range of

optical thickness. Finally, despite the fact that FCDSA reduces the spectral radius and hence the number of

iterations, the FLOP counts clearly indicate the high costs associated with solving the fully consistent DSA

equations. This renders the method impractical as a general purpose method for transport acceleration.

5 SUMMARY

We have seen that for certain problems of interest, in particular those containing highly diffusive, thick mesh

cells in combination with optically thin mesh cells, both fully consistent (FCDSA) and partially consistent

(S–WLA) methods can lose their effectiveness. This is an undesirable situation for the following reasons.

The linear systems involved in the fully consistent method are very large and difficult to solve. This means
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σt,2

σt,1 2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

2−10 4 4 6 8 11 16 nc nc nc nc nc

2−8 5 5 6 8 11 16 22 26 29 28 22

2−6 6 6 6 8 11 16 21 25 28 27 21

2−4 9 9 9 9 10 14 18 22 24 24 19

2−2 13 13 13 12 10 10 13 15 17 17 14

20 17 17 16 15 11 8 7 9 10 10 9

22 17 17 17 15 12 8 5 5 6 6 6

24 15 15 15 14 12 8 5 4 4 4 4

26 14 14 14 14 12 8 5 4 4 4 4

28 15 14 14 14 12 9 6 4 4 4 4

210 14 14 14 14 12 9 6 4 4 4 4

(a) Number of iterations

σt,2

σt,1 2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

2−10 49.9 61.2 139 149 170 222 nc nc nc nc nc

2−8 57.2 12.6 10.2 11.9 15.7 24.0 42.2 79.9 66.9 48.4 29.0

2−6 127 12.0 4.69 5.56 7.16 10.4 13.2 15.5 17.4 16.2 12.9

2−4 84.4 16.2 6.63 3.41 3.29 4.57 5.74 7.13 7.76 7.71 5.94

2−2 118 23.0 9.27 4.27 2.05 1.84 2.41 3.04 3.75 3.66 2.60

20 175 24.5 10.9 5.11 2.11 1.15 1.02 1.49 1.87 1.82 1.38

22 146 24.5 11.5 5.07 2.25 1.15 0.68 0.77 1.00 0.96 0.87

24 118 21.7 10.2 4.77 2.33 1.28 0.74 0.59 0.61 0.59 0.57

26 109 20.0 9.46 4.79 2.58 1.41 0.78 0.60 0.58 0.58 0.56

28 145 18.7 9.38 4.73 2.54 1.49 0.92 0.58 0.57 0.55 0.53

210 187 19.3 9.25 4.60 2.22 1.32 0.81 0.55 0.55 0.52 0.47

(b) FLOP counts (billions)

Table 1: Computational results with FCDSA for a realistic hetereogeneous problem containing two materials
whose total cross sections are σt,1 and σt,2 (cm−1). An entry “nc” indicates that the problem did
not converge in 4 CPU hours.
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σt,2

σt,1 2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

2−10 4 4 6 8 13 34 109 242 345 344 205

2−8 5 5 6 8 13 33 103 222 316 317 190

2−6 6 6 6 8 13 30 86 174 254 259 164

2−4 9 9 9 9 12 24 60 117 173 184 127

2−2 14 14 14 13 11 18 40 77 114 125 97

20 32 31 30 25 18 21 40 72 103 115 96

22 89 87 80 64 44 41 60 87 128 143 124

24 182 177 160 126 84 73 98 123 163 184 177

26 244 235 211 164 109 90 123 150 182 206 208

28 272 261 229 176 118 91 119 147 188 208 204

210 186 178 160 131 88 72 94 132 185 198 160

(a) Number of iterations

σt,2

σt,1 2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

2−10 0.10 0.10 0.14 0.17 0.27 0.69 2.18 4.82 6.87 6.84 4.08

2−8 0.12 0.12 0.14 0.17 0.27 0.67 2.06 4.42 6.29 6.30 3.78

2−6 0.14 0.14 0.14 0.17 0.27 0.61 1.72 3.46 5.05 5.15 3.26

2−4 0.20 0.20 0.19 0.19 0.25 0.49 1.20 2.33 3.44 3.66 2.52

2−2 0.30 0.30 0.30 0.27 0.23 0.37 0.81 1.54 2.27 2.48 1.93

20 0.66 0.64 0.62 0.51 0.37 0.43 0.8 1.44 2.05 2.28 1.90

22 1.80 1.76 1.61 1.29 0.89 0.82 1.20 1.73 2.54 2.82 2.44

24 3.67 3.56 3.21 2.53 1.68 1.45 1.95 2.44 3.21 3.62 3.47

26 4.91 4.72 4.23 3.28 2.17 1.79 2.44 2.96 3.57 4.03 4.07

28 5.48 5.25 4.59 3.52 2.35 1.81 2.35 2.90 3.68 4.06 3.98

210 3.75 3.58 3.21 2.62 1.75 1.43 1.86 2.60 3.62 3.86 3.12

(b) FLOP counts (billions)

Table 2: Computational results with the S–WLA scheme for a realistic hetereogeneous problem containing
two materials whose total cross sections are σt,1 and σt,2 (cm−1). An entry “nc” indicates that the
problem did not converge in 4 CPU hours.
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Figure 13: Mesh for a realistic heterogeneous problem consisting of two different materials as indicated by
the shading in the figure. The bottom face is reflective and the box contains a unit isotropic
distributed source.

that if the method is to be practical then the spectral radius must be small enough to warrant the expense

of solving these linear systems at every transport iteration. The degradation in the spectral radius seen here

implies that we cannot expect the method to be efficient in general. This is especially true for heterogeneous

problems that contain optically thick, diffusive, regions together with optically thin, streaming–dominated

regions, such as problems with ducts surrounded by highly scattering materials. Furthermore, the partially

consistent S–WLA method also loses its effectiveness and is even more affected by the material discontinuities

in such heterogeneous problems. Efficient transport solutions may not be attainable even though the linear

systems associated with the S–WLA method can be solved relatively easily.

So we are left with a situation where there is no DSA method which is clearly unconditionally effective

and efficient. However, in Part II of this paper we will present an approach that restores effectiveness of the

S–WLA method over a wide range of problems. We will show that the relatively inexpensive computations

involved in this DSA scheme enable us to once again efficiently compute transport solutions in the kinds of

optically thick, heterogeneous problems examined here.
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A Asymptotic–Preserving Lumping on Tetrahedra

In this appendix we derive a lumped linear-discontinuous finite-element tetrahedral-mesh discretization for

the SN equations that has excellent properties in the thick diffusion limit. The variational formulation for the

linear discontinuous discretization is given in Section 2.1. The discretization has one angular flux unknown

at each vertex i, denoted by ψi. We can illustrate the discretizations and their asymptotic properties by

considering just a single vertex. The vertex indexing for a tetrahedron is illustrated in Fig. 14. Angular

indices and cell indices will be suppressed for simplicity.

3

4

1

2

Figure 14: Tetrahedron vertex indexing.

Our first task is to describe the unlumped equations in detail. Using linear basis and trial functions in

Eqs. 3, the unlumped equation for vertex j = 1 is

1

4

[

ψ1 + ψ2 + ψ3 + ψ4

](

1

3
Ω̂·−→A1

)

+
1

4

[

2ψb
1 + ψb

3 + ψb
4

](

1

3
Ω̂·−→A2

)

1

4

[

2ψb
1 + ψb

2 + ψb
4

](

1

3
Ω̂·−→A3

)

+
1

4

[

2ψb
1 + ψb

2 + ψb
3

](

1

3
Ω̂·−→A4

)

+σt
1

5

[

2ψ1 + ψ2 + ψ3 + ψ4

]

V

4
=

1

5

[

2q1 + q2 + q3 + q4

]

V

4
,

(8)

where we have suppressed the cell index k and angular index m. In this expression ψb
j denotes a boundary

flux defined in Eq. (3b), Ω̂ is a unit direction vector,
−→
Ai is the outwardly directed area vector for face i, V

denotes the volume of the tetrahedron, and qi denotes the total source for vertex i, which is the sum of the

scattering and inhomogeneous sources, or

qi = σsφi +Qi . (9)

19



We assume isotropic scattering and isotropic inhomogeneous sources. The area vector is the integral of the

outwardly directed normal unit vector over a face, that is,

−→
A =

∫

A

n̂ dA . (10)

The lumping process is well defined for the surface leakage, removal and source terms in Eq. (8). In

particular, one simply replaces the weighted volumetric averages for these terms with ψ1 and q1 respectively,

for example,

1

4

[

2ψb
1 + ψb

3 + ψb
4

]

−→ ψ1, (11)

1

4

[

2ψb
1 + ψb

2 + ψb
4

]

−→ ψ1, (12)

1

4

[

2ψb
1 + ψb

2 + ψb
3

]

−→ ψ1, (13)

1

5

[

2ψ1 + ψ2 + ψ3 + ψ4

]

−→ ψ1, (14)

1

5

[

2q1 + q2 + q3 + q4

]

−→ q1. (15)

Following the prescription given in Eqs. (11) through (15), the surface-lumped, removal-lumped and source-

lumped version of Eq. (8) is

1

4

[

ψ1 + ψ2 + ψ3 + ψ4

](

1

3
Ω̂·−→A1

)

+ ψb
1

(

1

3
Ω̂·−→A2

)

+ ψb
1

(

1

3
Ω̂·−→A3

)

+ ψb
1

(

1

3
Ω̂·−→A4

)

+ σtψ1
V

4
= σtq1

V

4
. (16)

We now consider the behavior of the discretization represented by Eq. (16) in the thick diffusion limit through

an asymptotic analysis.15–17 First, we scale the problem as follows:

σt −→ σt/ε , (17)

σa −→ σaε , (18)

σs −→ σt/ε− σaε , (19)

q −→ qε , (20)

where ε is a small parameter. Next, the angular flux is expanded in powers of ε

ψ =
∞
∑

n=0

ψ(n)εn , (21)

where ψ(n) denotes the asymptotic components of the solution multiplied by εn. Finally, Eq. (21) is sub-

stituted into the scaled transport equation and the coefficients for each power of ε are equated to obtain a

20



heirarchy of equations ordered by index n. When this procedure is applied to the analytic transport equation,

the leading–order scalar flux satisfies the diffusion equation

−−→∇· 1

3σt

−→∇φ(0) + σaφ
(0) = q , (22)

the leading-order currents are identically zero,

−→
J (0) =

−→
0 , (23)

and the first-order currents satisfy Fick’s law,

−→
J (1) = −1

3

−→∇φ(0) . (24)

When applied to SN discretization scheme represented by Eq. (16), the asymptotic scaling yields an accurate

discretization of the diffusion equation for the leading–order scalar flux on the mesh interior that is identical

to the lumped linear–continuous finite-element discretization. However, while this scheme yields correct

leading-order currents that are identically zero, it also yields first-order currents that are incorrect in that

they are not exact for a linearly-dependent scalar flux. For example, at vertex 1 the expression for the

first-order current is

−→
J

(1)
1 = − 1

3σt

{

1

V

[

1

3

(

φ
(0)
2 + φ

(0)
3 + φ

(0)
4

)

− φ
(0)
1

]−→
A1

}

. (25)

This expression is clearly wrong for an arbitrary linear dependence of φ(0) because the current is always

directed along
−→
A1. Such a situation is highly undesirable because the currents calculated in a highly diffusive

problem are dominated by the first-order currents. It is difficult to imagine how the correct scalar fluxes

are obtained when the currents are incorrect. However, some insight can be gained without going into too

much detail. Begin by noting that the average of the four vertex current expressions is in fact exact for an

arbitrary linear dependence of φ(0). Again consider the expressions for vertex 1:

−→
J (1)

avg = − 1

3σt

{

− 1

3V

(

φ
(0)
1

−→
A1 + φ

(0)
2

−→
A2 + φ

(0)
3

−→
A3 + φ

(0)
4

−→
A4

)}

. (26)

The accuracy of this expression can be recognized through the integral identity

(−→∇φ(0)

)

avg

=
1

V

∫

V

−→∇φ(0) dV =

∮

δV

φ(0)n̂ dA . (27)

If φ(0) has a linear dependence then its gradient will be constant. Thus the gradient at each vertex will be

equal to the average gradient. The expression inside the curly brackets in Eq. (26) follows directly from a
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straightforward discretization of the surface integral in Eq. (27) that is exact for a linear dependence of φ(0).

This is most easily seen by re–expressing Eq. (26) as follows:

−→
J (1)

avg = − 1

3σt

{

1

V

[

1

3

(

φ
(0)
2 + φ

(0)
3 + φ

(0)
4
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A1 +

1

3

(

φ
(0)
1 + φ

(0)
3 + φ

(0)
4

)−→
A2

+
1

3

(

φ
(0)
1 + φ

(0)
2 + φ

(0)
4

)−→
A3 +

1

3

(

φ
(0)
1 + φ

(0)
2 + φ

(0)
3

)−→
A4

]}

,

(28)

Equation (28) reduces to Eq. (26) taking into account that the area vectors sum to zero.

The inaccuracy of the first-order currents is eliminated by manipulating and and then lumping the interior

leakage term in Eq. (16). For instance, we can first rewrite Eq. (16) as

−1

4

[

ψ1 + ψ2 + ψ3 + ψ4

](
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− 1

4
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](
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)

+ψb
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)
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1

(

1

3
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)

+ ψb
1

1

3

(

1

3
Ω̂·−→A4

)

+ σtψ1
V

4
= σtq1

V

4
,

(29)

and then lump the internal leakage terms:

1

4

[

ψ1 + ψ2 + ψ3 + ψ4

](

1

3
Ω̂·−→Ai

)

→ 1

4

[

ψ1 + 3ψi

](

1

3
Ω̂·−→Ai

)

, for i = 2, 3, 4. (30)

This yields the following fully lumped SN discretization scheme:
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(31)

Applying the asymptotic analysis to this discretization gives an expression for the first–order current at

vertex 1 that is exact for any linearly–dependent φ(0). That is,

−→
J

(1)
1 = − 1

3σt

{

− 1

3V

(

φ
(0)
1

−→
A1 + φ

(0)
2

−→
A2 + φ

(0)
3

−→
A3 + φ

(0)
4

−→
A4

)}

, (32)

which is identical to
−→
J

(1)
avg given in Eq. (26). Furthermore, this same expression is obtained for every vertex

which is to be expected because the linear finite element approximation implies a constant gradient within

the tetrahedron. We emphasize that the SN discretization defined by Eq. (31) calculates accurate currents

in highly diffusive problems while the scheme defined by Eq. (16) does not, even though they both yield the

same leading–order interior-mesh asymptotic diffusion discretization.
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